Round table

Lessons learned to optimize occupational radiation protection

Josep M Martí-Climent

Clínica Universidad de Navarra. Pamplona, Spain
To be or not to be aware of the own occupational exposures?

- Theoretically: everybody
- Practically: some people
How should awareness be improved?

- Occupational exposures
- Underlying causes of exposures and how to control

RP Service → Department Director → Worker

Department occupational exposure
Dose reference levels for groups

People beyond the reference Hp(10) level

<table>
<thead>
<tr>
<th>Group</th>
<th>Reference Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET Lab</td>
<td>0.40</td>
</tr>
<tr>
<td>MN</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Why these values?
Dose reference levels for groups

People beyond the reference Hp(10) level

<table>
<thead>
<tr>
<th>Reference Dose</th>
<th>User</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET Lab</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Lab-1</td>
<td></td>
<td>0.78</td>
<td>1.35</td>
<td>0.41</td>
<td>0.49</td>
<td></td>
<td></td>
<td>0.47</td>
<td>0.83</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab-2</td>
<td></td>
<td>0.45</td>
<td>0.81</td>
<td>0.56</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMP-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.52</td>
<td></td>
<td></td>
<td>0.56</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMP-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mainten</td>
<td></td>
</tr>
<tr>
<td>Staff</td>
<td></td>
</tr>
<tr>
<td>MN</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Nurse-1</td>
<td></td>
<td>0.28</td>
<td>0.3</td>
<td>0.21</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse-2</td>
<td></td>
<td>0.29</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.23</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse-2</td>
<td></td>
<td>0.21</td>
<td></td>
<td>0.28</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Investigate: High value
Exceeding frequently
Reasons for individual dose elevation

- Contamination
- Workload increased
- Activity carefully loaded in a syringe
- Intervention in a synthesis module
- Cyclotron maintenance/intervention
- Setting up a new radiopharmaceutical

Were they aware of the risk?
Activities that need attention
- potential high dose
- doses are not well known

• Cyclotron intervention
• PET Radiopharmaceutical production

• Radiomethabolic treatments: new or not very frequent
Our experience with the ORAMED project

• Good practice
 – technicians /nurses rotation
 – Massive shielding

• Maximum/measured dose ≈ 3
How to improve RP?

• Training

• Standardization of minor procedures

• Active dose meters in PET
 – Dose vs Dose rate + Alarm
Round table
Lessons learned to optimize occupational radiation protection

Josep M Martí-Climent

Clínica Universidad de Navarra. Pamplona, Spain