GUIDELINES FOR THE USE OF
ACTIVE PERSONAL DOSEMETERS IN INTERVENTIONAL
RADIOLOGY/CARDIOLOGY- ORAMED PROJECT

J. Daures1 I. Clairand2, J-M. Bordy1, E. Carinou3, J. Debroas2, M. Denozière1, L. Donadille2, M. Ginjaume4, C. Itié2, C. Koukorava3, S. Krim5, A-L. Lebacq5, P. Martin6, L. Struelens5, M. Sans-Mercé7 and F. Vanhavere5

1 CEA-LIST Laboratoire National Henri Becquerel (CEA LNHB), France
2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
3 Greek Atomic Energy Commission (GAEC), Greece
4 Institute of Energy Technology, Universitat Politècnica de Catalunya (UPC), Spain
5 Belgian Nuclear Research Centre (SCK•CEN), Belgium
6 MGP Intruments (MGPi), France
7 Institute of Radiation Physics (IRA), University Hospital Center and University of Lausanne, Switzerland
General problematic and main goals

This work has been done in the WP3 of ORAMED dealing with the optimization of the use of the Active Personal Dosemeters in interventional radiology/cardiology

- **In interventional radiology and cardiology (IR/IC)**
 The possibility to assess the dose equivalent in real time is particularly interesting since medical staff can receive relatively high doses while standing close to the primary radiation field.

- **Active Personal Dosemeters APDs**
 Operational dosimetry, which provides information in real time with electronic devices, allows the application of the ALARA principle. Possible alarm at a pre-set dose equivalent and/or dose equivalent rate level when the personnel is accidentally exposed to the primary beam is very attractive.

- **Personal dose equivalent \(Hp(10)\)** is measured to estimate the effective dose \(E\).

- **Guidance to select an appropriate APD electronic device for the radiology and cardiology specific workplaces**

- **Guidance to use APD correctly in radiology and cardiology pulsed beams**
Interventional Radiology and Cardiology specificities

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>High voltage</td>
<td>60-120 kVp</td>
</tr>
<tr>
<td>Intensity</td>
<td>5-1000 mA</td>
</tr>
<tr>
<td>Inherent filtration</td>
<td>3 - 6 mm Al_{eq} (typically 4.5 mmAl_{eq})</td>
</tr>
<tr>
<td>Additional filtration</td>
<td>0.2 - 0.9 mmCu</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>1 - 20 ms (typically 10-20 ms)</td>
</tr>
<tr>
<td>Pulse frequency</td>
<td>1 - 30 pps (typically 15 pps)</td>
</tr>
<tr>
<td>Dose equivalent rate in the direct beam (table)</td>
<td>2 to 360 Sv.h^{-1}</td>
</tr>
<tr>
<td>Dose equivalent rate in the scattered beam (operator - above the lead apron)</td>
<td>5.10^{-3} to 10 Sv.h^{-1}</td>
</tr>
<tr>
<td>Energy range of scattered spectra</td>
<td>20 keV - 100 keV</td>
</tr>
</tbody>
</table>
Beam characteristics

Typical HV waveform in multi-pulse mode 70 kV 10 pps

Pulse frequency: number of pulses per second = pps
Pulse width: Dt
Direct beam: beam directly delivered by the X-ray tube
Scattered beam: scattered beam by patient and equipment
APDs characteristics and previous studies

- Only a few devices can detect low energy fields (20-100 keV). The threshold in energy is generally higher than 20 keV.

- None of them are specially designed for working in pulsed radiation fields.

This problem was clearly highlighted during two international comparisons:

1- Inter comparison of personal dose equivalent measurements by active personal dosimeters organised by EURADOS and IAEA. (2007). *IAEA Report IAEA-TECDOC-1564 (Vienna: IAEA)*

2- Inter comparison performed in the framework of the CONRAD project, supported by the EC within its 6th Framework Program. *Inter comparison of active personal dosemeters in interventional radiology. Clairand et al. Radiat. Prot. Dosim. 129 (1-3), pp. 340-345*

Continuous and mono-pulse beams In primary beam
Continuous beam and mono-pulse beams In the scattered beam of the patient phantom
ORAMED STUDY

- 8 APDs suitable for IR/IC were tested in terms of:
 - energy response
 - angular response,
 - dose equivalent response
 - dose equivalent rate response
- In different conditions
 - Laboratory continuous beam
 - laboratory multi-pulsed beam
 - pulse width (Dt)
 - Pulse frequency (pps)
 Pulsed X-rays for interventional radiology:
 Tests on Active Personal Dosemeters
 Denozière M, Daures J, Lecerf N, Bordy JM.
 CEA-R-6233 report, (APD)
- Hospital real conditions
Specific ORAMED recommendations when selecting an APD in IR/IC (1/3)

- The APD has to fulfill the requirements of the IEC 61526 standard “Radiation protection instrumentation – Measurement of personal dose equivalents Hp(10) and Hp(0,07) for X, gamma, neutron and beta radiations – Direct reading personal dose equivalent meters »

 - Energy response: correct (-29% +67%) in the energy range 20 keV – 100 keV
 - Angular response: correct (-29% +67%) from 0° to 60° from the reference direction within the energy range 20 keV – 100 keV.
 - Dose equivalent rate range: The maximum dose equivalent rate value required by IEC is 1 Sv/h. But in IR/IC, APD can stand higher dose equivalent rates, it has to be able to give at least an alarm for dose equivalent rates higher than 1 Sv/h.
Specific ORAMED recommendations when selecting an APD in IR/IC (2/3)

- As pulsed radiation fields are not taken into account in existing standards, some information in the APD characteristics in pulsed fields are needed (effect of pulse frequency and pulse width response)

 - Results of the tests eventually performed by the manufacturer
Specific ORAMED recommendations when selecting an APD in IR/IC (3/3)

- Perform tests using the following configuration
 - Place one ISO slab phantom on the table to simulate the scattered field created by the patient
 - Place one ISO slab phantom at a representative position of the operator
 - Place the APD and a passive dosemeter side by side on the operator phantom (without lead apron)
 - Use a usual configuration of your facility (kV, mAs, and integrate at least 300 µSv
 - A factor of 2 between the doses given by the active and passive dosemeters can be considered as acceptable.
Specific ORAMED recommendations when using an APD in IR/IC

- The APD has to be periodically (according to local regulation) calibrated in terms of $Hp(10)$ preferably with X-ray beams in a calibration laboratory traceable to the primary standard, the conditions of calibration have to be as close as possible as those of use.

- The APD is considered, for this application in IR/IC, as a tool to optimize and reduce the exposure (ALARA principle), we then recommend to wear it the over the lead apron.

- We do not recommend to use APD for the legal dose record in case of IR/IC, the reference $Hp(10)$ has still to be taken from the passive dosemeter results.

- The alarm should be switched ON (only visual alarm) in order to warn the operator when he/she is too close to the direct beam.
Thank you for your attention